Member-only story

Apache Kafka vs. Integration Middleware (MQ, ETL, ESB) — Friends, Enemies or Frenemies?

Kai Waehner
4 min readAug 28, 2019

--

Learn the differences between an event-driven streaming platform like Apache Kafka and middleware like Message Queues (MQ), Extract-Transform-Load (ETL) and Enterprise Service Bus (ESB). Including best practices and anti-patterns, but also how these concepts and tools complement each other in an enterprise architecture.

This blog post shares my slide deck and video recording. I discuss the differences between Apache Kafka as Event Streaming Platform and integration middleware. Learn if they are friends, enemies or frenemies.

Problems of Legacy Middleware

Extract-Transform-Load (ETL) is still a widely-used pattern to move data between different systems via batch processing. Due to its challenges in today’s world where real time is the new standard, an Enterprise Service Bus (ESB) is used in many enterprises as integration backbone between any kind of microservice, legacy application or cloud service to move data via SOAP / REST Web Services or other technologies. Stream Processing is often added as its own component in the enterprise architecture for correlation of different events to implement contextual rules and stateful analytics. Using all these components introduces challenges and complexities in development and operations.

Apache Kafka — An Open Source Event Streaming Platform

This session discusses how teams in different industries solve these challenges by building a native event streaming platform from the ground up instead of using ETL and ESB tools in their architecture. This allows to build and deploy independent, mission-critical streaming real time application and microservices. The architecture leverages distributed processing and fault-tolerance with fast failover, no-downtime, rolling deployments and the ability to reprocess events, so you can recalculate output when your code changes. Integration and Stream Processing are still key functionality but can be realized in real time natively instead of using additional ETL, ESB or Stream Processing tools.

A concrete example architecture shows how to build a complete streaming platform leveraging the widely-adopted open source…

--

--

Kai Waehner
Kai Waehner

Written by Kai Waehner

Technology Evangelist — www.kai-waehner.de → Big Data Analytics, Data Streaming, Apache Kafka, Middleware, Microservices => linkedin.com/in/kaiwaehner

No responses yet

Write a response